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Abstract

The author's method of integral characteristics of solutions to boundary-initial value problems of contact is
applied to solve some new problems of anisotropic elastodynamics. For both anisotropic elastic and elastic with

initial stresses media, solutions are obtained to impact problems which were solved earlier for only an isotropic
linear elastic medium. It is also found the resultant contact force in the problems of both frictional and frictionless
pressing normal to the boundary plane of the anisotropic continuous both an elastic with initial stresses and a linear

viscoelastic orthotropic half-spaces. Some general properties of dynamical contact problems are also formulated. In
particular, conditions are provided when problems of vertical pressing are self-similar. Crown Copyright # 2000
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic contact problems for continuous media are mathematically very complicated and usually the

use of traditional methods does not allow us to ®nd the transient ®elds of displacements u(x, t ) and

stresses sij(x, t ) arising in the media during the contact. However, sometimes it is possible to ®nd some

integral characteristics of these ®elds without their study in detail. Examples of such characteristics are

the resultant force P of contact between the medium and the contacting body and the resulting moments

Mi of contacting stresses.

To study these quantities the author introduced the so-called method of integral characteristics of

solutions to boundary-initial value problems of contact (Borodich, 1990a, 1990b, 1990c, 1991). The key
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idea of the method is to reduce the problem for the integral characteristics of a three-dimensional
problem to a problem of plane waves propagation in the same medium. The results of the above
author's papers were summed up as:

It has been developed a method to study integral characteristics of solutions to dynamical problems
of pressing of blunt dies into both homogneous and non-homogneous along depth media with linear
constitutive relations. The method can be applied to both problems of pressing normal to boundary
plane of the continuous half-space and to problems of pressing with rotation of body axes. Using this
method, there has been obtained both expressions for the resultant forces, which a�ect the body
during the dynamical pressing, and expressions for the resulting moments of reacting stresses (in the
case of orthotropic media). The method's means has been shown by giving examples of anisotropic
linear elastic, orthotropic viscoelastic, non-homogneous along depth isotropic linear elastic, and
elastic with initial stresses media

(see p. 256 in Borodich 1990c).
The method is quite general. Indeed, the integral characteristics for anisotropic elastic media were

found in the above author's papers for the ®rst time. However, it is necessary to underline that the
method (Borodich, 1990a, 1990b, 1990c, 1991) was applied only to frictionless contact problems. Here,
we continue to show the method's means by solving new dynamical contact problems and problems of
collision, in particular frictional problems for both anisotropic elastic and elastic with initial stresses
media.

The paper is organised as follows: in Section 2, some preliminary information attributed to dynamical
contact problems is recalled. In Section 3, both a piecewise smooth formulation and a generalised weak
formulation of the dynamical problems are provided. In Section 4, it is shown that the problems of
vertical pressing usually have the supersonic stage of the contact region extension. Here, conditions are
also provided when problems of vertical pressing are self-similar. The exact solutions to plane wave
problems for anisotropic elastic and elastic with initial stresses media are given in in Section 5. Here, the
general form of solutions to plane wave problems for orthotropic viscoelastic solids is also given. The
method of integral characterisics is described in Section 6. Integral characteristics for frictionless
problems of pressing a die with rotation of its axes into a prestressed elastic half-space are found in
Section 7. Finally, in Section 8, the ®rst stage of frictional collision of a die and a continuous
anisotropic half-space is studied. The die is treated there as a blunt convex rigid body having an
arbitrary shape with two orthogonal planes of symmetry, which are both orthogonal to the boundary of
half-space. Exact expressions are obtained for the relationships between time, depth of indentation, and
velocity of the body. A proof is given that the expressions are independent of the boundary conditions
in the contact region.

2. Preliminaries

Here, we will give some information concerning dynamical contact problems.

2.1. Self-similar problems of elastodynamics

Due to their complexity, the dynamic problems of indentation of a rigid die into a continuous half-
space were studied initially in cases of self-similar problems for linear elastic media. To ensure the self-
similar character of the contact problems the die velocity must be given in advance (see, for example,
Borodich, 1988a, 1990c). There are several approaches for self-similar problems of elastodynamics,
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namely the Smirnov±Sobolev method (Smirnov and Sobolev, 1932, 1933; Sobolev, 1937) of functional-
invariant solutions, the Willis (1973) approach based on the transform methods and two other methods,
both being introduced by Brock: the homogeneous-function method (Brock, 1976, 1977, 1978) and
integral-transform method (Brock, 1993).

The Smirnov±Sobolev method was originally intoduced for two-dimensional problems. However,
Kostrov (1964a, 1964b) developed it and showed that the Smirnov±Sobolev method can be used to solve
some axisymmetrical self-similar problems. Using his method of superposition of functional-invariant
solutions, Kostrov (1964a, 1964b) solved the self-similar problems of frictionless pressing of rigid conical
and wedge-shaped dies into an elastic half-space. Note that Kostrov proposed a few additional
hypotheses concerning regions of contact. The same problems, without these hypotheses, were solved
independently by Afanasev and Cherepanov (1973) and Robinson and Thompson (1974a, 1974b).

It is known that the Smirnov±Sobolev method is e�ective when there are no tangental stresses on the
boundary of the half-space and the medium is isotropic. Willis (1973) developed another method and
studied self-similar problems of frictionless and adhesive pressing of wedge-shaped dies into an elastic
anisotropic half-space. Then the Willis method was successfully used to solve boundary-initial value
problems with both frictionless and frictional boundary conditions (see, e.g., Bedding and Willis, 1973,
1976). The Brock approaches were developed in application to various frictional self-similar contact
poblems by Brock and Georgiadis, 1994 and Georgiadis et al., 1995.

The self-similar problems include the problems when the traction vector T or displacements u� known
on the boundary plane are homogeneous functions, in particular

T � d�t�d�x1�d�x2�il, u� � d�t�d�x1�d�x2�il �1�
where d is Dirac delta and il is the unit vector directed along the xl-axis. The solutions to these problems
can be used as the Green functions for transient elastodynamic problems.

2.2. Integral characteristics for problems of vertical indentation

Let a homogeneous half-space R3
�, initially at rest, be subject to dynamic indentation by a blunt

convex die, whose shape is de®ned by the graph of the non-negative function f(x1, x2).

Fig. 1. A sketch of the die and the coordinate axes (after Borodich, 1990c).
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Let the velocity of the die (V(t )) be directed along the normal to the boundary of the half-space x3=0
(Fig. 1). Let G(t ) be the open region of contact between the die and the medium, S the area of G, @G its
boundary. Let g be the speed of the curve @G along the boundary of the half-space R3

�, measured along
the normal to @G. We will show below that if the initial velocity V(0) of the die is non zero, then there
exists a time interval [0, ta ], ta > 0, on which g exceeds the maximum speed of wave propagation in the
medium. It is said that the process of indentation in the interval [0, ta ] is supersonic in nature.

In the dynamical problems with a priori given velocity of a rigid die, an extremely simple relationship
for the instantaneous value of the force P(t ), required to indent the die during the supersonic stage of
contact was obtained: the force P(t ) is directly proportional to the product of the velocity of indentation
V(t ) and the area S(t ) of contact

P�t� � raV�t�S�t�: �2�

Here, r is the density of the medium and a is the constant speed of sound in ¯uid or the speed of
propagation of the longitudinal waves in elastic body.

First, this relationship Eq. (2) was obtained in the problem of contact for the ideal compressible ¯uid
(acoustic medium) by Skalak and Feit (1966). Then the validity of the relationship (Eq. (2)) in the
problem of frictionless contact between an axisymmetrical die and an isotropic elastic half-space was
announced by Simonov and Flitman (1966) and the full proof was published by Simonov (1967). The
validity of the relationship in the frictionless three-dimensional problem for the isotropic elastic medium
was shown by Robinson and Thompson (1975). The relationship for the contact force P(t ), which was
obtained by Bedding and Willis (1976) from the exact solution to the adhesive self-similar contact
problem, conforms precisely to Eq. (2).

After the end of the supersonic stage, the value of the vector of displacements u(x1, x2, 0, t ) is
di�erent from zero only over the bounded region U, which has the decomposition U=G[G1, where G1

is the region of disturbed motion of the boundary surface particles, which are not in mutual contact
with the die. It was found by Skalak and Feit (1966) that

P�t� � ra�V�t�S�t� � V1�t�S1�t��, �3�

where V1(t ) and S1(t ) are the mean velocity over the region G1 and the area of this region, respectively.
Then it was shown that the relationship Eq. (3) is valid in the problems of frictionless indentation for
isotropic (Popov, 1990) and anisotropic elastic media (Borodich, 1990a, 1990b) and in the case of
frictional indentation (Borodich, 1995).

It should be noted that various techniques were used to obtain the relationships Eq. (2). To study the
problems, Skalak and Feit (1966) employed the method of the retarded potential, Simonov used the
Hankel transform, while Kubenko and Popov (1989) and Popov (1990) (see also Kubenko, 1997) used
the Laplace transform and the Fourier±Bessel series expansion. Robinson and Thompson (1975) used an
indirect way. Using the technique of the Smirnov±Sobolev functional-invariant solutions, they found a
solution to an auxiliary self-similar problem when velocities at the boundary points are described as the
concentrated velocity, i.e., formulae for velocities are similar to the formulae in Eq. (1). Then they
solved the main problem by integration of the obtained auxiliary solutions.

There arises a natural question:

Why was the superposition of the Willis solutions for self-similar problems of concentrated velocities
or loads not used in order to ®nd the integral characteristics?

(Professor B.E. Pobedrya, Moscow State University, 1989)
The answer is that the Willis method is very general and it allows us to ®nd the detailed distribution
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of both stress and displacement ®elds in elastic media. However, the integral characteristics can be
found in a simpler way. On the other hand, the applicability of the Willis' method is restricted by elastic
media only. As mentioned above, the author's method was applied to various media whose properties
cannot be completely described by Hooke's law (Borodich, 1990c, 1991).

3. Formulations of elastodynamic problems

We choose the origin of a Cartesian coordinate system Ox1x2x3 to be at the point of initial contact
between the die and the half-space. We orient the x3 axis into the interior of the half-space and the x1
and x2 axes along its boundary (Fig. 1).

3.1. Classical equations and piecewise smooth solutions

We will give the formulation of the problem for the case of linear anisotropic elastodynamics keeping
in mind that the formulation of the problem for homogeneously prestressed elastic media can be
obtained from this case by substituting yk instead of xk, o�ijkl instead of Cijkl and Qij instead of sij (see
Appendix A).

Let u(x, t ) be the displacement vector of the particles of the medium, sij(x, t ) the components of the
stress tensor associated with the disturbance produced by the die. The force of interaction between the
body and the medium is de®ned by

P�t� �
� �

G�t�
s33�x1, x2, 0, t� dx1 dx2:

If we seek the solution to a linearized problem of elastodynamics between piecewice regular
elastodynamic states on R3

� � �0, t��, then there exists a regular partition {D1, D2,..., Dm } of R3
� � �0, t��

separated by surfaces Sk, which are surfaces of discontinuity for derivatives of the displacement vector.
Let us write equations in the domains where the vector u is continuous together with its derivatives up

to second order with respect to the coordinates and time. Then we have the following classical
elastodynamic equations of motion

sji, j�x, t� ÿ r �ui�x, t� � 0, i, j � 1, 2, 3; �4�
and constitutive relations

sij �F
��uk, l � ul, k�

2

�
on R3

� � �0, t�: �5�

Here and henceforth, the dot will denote the derivative with respect to time and a comma before the
subscript will denote the derivative with respect to the corresponding coordinate; summation from 1 to 3
is assumed over repeated Latin subscripts, while there is no summation over the Greek subscripts. F is
the operator of the constitutive relations. For anisotropic elastic media, the constitutive relations have
the following form

sij � Cijkluk, l, Cijkl � Cjikl � Cklij: �6�
The tensor Cijkl is positive-de®nite (see, e.g., Guz, 1986a). In particular, in the case of an isotropic

elastic medium, Hooke's law becomes
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sij � ldijuk, k � m�ui, j � uj, i �,
where l and m are the LameÂ coe�cients.

These u and sij should satisfy the following initial conditions of a body at rest and boundary
conditions of contact

u�x, 0� � Çu�x, 0� � 0,

u3�x1, x2, 0, t� � g�x1, x2, t�, �x1, x2� 2 G�t�

s3i�x1, x2, 0, t� � 0, �x1, x2� 2 R2nG�t�, �7�
where g(x1, x2, t ) is a known function. In the problem of vertical pressing, we have

g�x1, x2, t� � H�t� ÿ f �x1, x2�, �x1, x2� 2 G�t�, �8�
where H(t ) is the depth of indentation of the die apex, which is given by the formula

H�t� �
�t
0

V�t�dt: �9�

To complete the formulation of the boundary-initial value problem it is necessary to give two
additional conditions for tangential components of stresses or displacements within G(t ).

Let us denote

W�x1, x2, t� � fu1�x1, x2, 0, t�, u2�x1, x2, 0, t�g,

ttt�x1, x2, t� � fs31�x1, x2, 0, t�, s32�x1, x2, 0, t�g:
The frictionless contact problem should satisfy the following conditions

ttt�x1, x2, t� � 0, �x1, x2� 2 G�t�: �10�
In the case of full adhesion, there is no relative slip between the die and the boundary of the half-

space within the contact region, i.e., the tangential components of displacements within G(t ) cannot
change with augmentation of the indentation depth. This is expressed by

@W1�x1, x2, t�
@t

� @W2�x1, x2, t�
@t

� 0, �x1, x2� 2 G�t�: �11�

It is usually assumed in the frictional contact problems that the contact region G consists of the
following parts:

(i) the inner adhesive part, GA, where the interfacial friction is su�cient to prevent any slip between
the die and the half-space, i.e., (Eq. (11)) holds;
(ii) the outer adhesive part, GF, where the interfacial friction satis®es the Coulomb frictional law:

ttt�x1, x2, t� � ÿfs33�x1, x2, 0, t�
�

W�x1, x2, t�
jW�x1, x2, t�j

�
, �x1, x2� 2 GF�t�, �12�

where f is the coe�cient of friction.
The above equations give the formulation of a boundary-initial value contact problem in the domains
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where the vector u is continuous together with its derivatives up to second order with respect to the
coordinates and time. However, the function u(x, t ) is continuous (because we do not consider a
cracked media) but not smooth enough. For example, the ®rst derivatives of u3 with respect to the
spatial variables are discontinuous on @G(t ) at the supersonic stage. Thus, we have to provide either a
piecewise smooth formulation or a generalised weak formulation of the problem.

If we seek the solution between piecewice regular elastodynamic states on R3 � [0, t ], then the sought
solution should satisfy some jump conditions:

(i) kinematic (Maxwell) conditions

�Mai �2 � 0, Mai � nka
@ui
@ t
� ck

@ui
@xa

, �13�

(ii) dynamic (Sobolev) conditions

�M4i �2 � 0, M4i � Cijkln
k
j

@uk
@xl
� rck

@ui
@ t

, �14�

where nj=cos(n, xi ) and ck are the direction and the speed of propagation of the surface Sk. In the
region of singular curves of Sk, there are some additional energy restrictions (see for detail, e.g.,
Brockway, 1972; Borodich, 1990a, 1990c).

3.2. Weak elastodynamic states

We will employ the symbol L2�R3
� � �0, t��� for the class of all tensor-valued functions whose squares

are Lebesgue integrable in R3
� � �0, t��: If O is some domain, then we denote by C 1

0�O� the set of
functions continuously di�erentiable in O such that they vanish on a boundary strip (each function has
its own strip) of the domain of de®nition; if O is an in®nite domain, then we additionally require that
functions from C 1

0�O� have compact support. If there exist a vector ®eld q and rank-2 tensor ®eld z that
are integrable in R3

� � �0, t�� with the following relationships for any j 2 C 1
0�R3
� � �0, t����t�

0

�
R3
�

_japa dV dt � ÿ
�t�
0

�
R3
�

jaqa dV dt,

�t�
0

�
R3
�

ja, bpa dV dt � ÿ
�t�
0

�
R3
�

jazab dV dt,

where dV denotes dx1dx2dx3, then we say that p possesses generalised derivatives q in the Sobolev sense
with respect to time and generalised gradient z on R3

� � �0, t�� (see, e.g., Ladyzhenskaya, 1985;
Brockway, 1972; Borodich, 1990b, 1990c). We set @bpa0zab and _@pa � qa:

The ordered pair [u, ss] is a weak dynamic state on R3
� � �0, t�� corresponding to the density ®eld r

and the operator of the constitutive relations F, provided that the following relations are observed
(Borodich, 1990c; see also, Brockway, 1972):

u 2W 1
2

�
R3
� � �0, t��

�
,

sij �F
��@kul � @ luk�

2

�
on R3

� � �0, t��: �15�
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In addition, for every jjj 2 C 1
0�R3
� � �0, t���, the following integral identities are satis®ed�t�

0

�
R3
�

ÿ
r _ja@ _ua ÿ ja, jsja

�
dV dt � 0, a � 1, 2, 3, �16�

where W 1
2 is the Sobolev space and C is a space of continuous functions.

We assume that the generalised solution of the dynamic contact problem is among weak
elastodynamic states [u, ss] on R3

� � �0, t�� and, in addition, the vector u is continuous but non-smooth,
i.e.,

u 2 C
�
R3
� � �0, t��

�
: �17�

Eqs. (15) and (16) are written in the weak formulation of elastodynamic problem instead of Eq. (4).
We consider weak states [u, ss] subject to the following generalised initial,

u�x, 0� � u0�x�, �18�

and boundary conditions:

u3�x1, x2, 0, t� � g�x1, x2, t�, �x1, x2� 2 G�t�, �19�

�t�
0

�
R3
�

�
r _ca@ _ua ÿ ca, jsaj

�
dV dt�

�
R3
�

v0a�x�r�x�ca�x, 0� dV�
�t�
0

�
R2

Taca dx1 dx2 dt � 0,

a � 1, 2, 3,

�20�

instead of Eq. (7).
The last integral identities are satis®ed for any functions cc such that

ccc 2 C 1
�
R3
� � �0, t��

�
, ccc�x, t�� � 0,

c3�x1, x2, 0, t� � 0 for �x1, x2� 2 G�t� and 0RtRt�: �21�

Here, u0 and v0 are the initial displacements and velocities of points of the medium respectively; T1

and T2 are the tangential surface tractions given on the whole boundary plane, and T3 is the normal
traction given outside the contact region G; g is a function for the normal displacement which is known
on the whole contact region G. It follows from Eq. (7) that these values satisfy the following conditions

u0�x� � 0, v0�x� � 0,

Ta�x1, x2, t� � 0, �x1, x2� 2 R2nG�t�, a � 1, 2, 3: �22�

Thus, Eq. (20) can be written in the following form
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�t�
0

�
R�

�
R2

�r _ca@ _ua ÿ ca, jsaj � dx1 dx2 dx3 dt�
�

R3
�

0 � r�x�ca�x, 0� dx1 dx2 dx3

�
�t�
0

�
G�t�

Ta � ca dx1 dx2 dt � 0, a � 1, 2, 3:

�23�

4. General properties of dynamical contact problems

Let a die contact the boundary of a half-space at the moment t=0. and the shape of the die be
described by the function f, i.e.,

x3 � ÿf �x1, x2�:
Then we can formulate some general properties of dynamical contact problems which are valid for

media with various consitutive relations.

4.1. Supersonic stage of contact

Let us show that, in the problem of vertical pressing, if the initial velocity of a blunt die is non zero,
then there exists a time interval on which the speed of propagation of the contact region boundary
exceeds the maximum speed of wave propagation in the medium. The proof of the corresponding
assertion is obtained by using only geometrical arguments.

Assertion 1. Let the body be smooth and blunt, i.e.,

f �x1, x2� 2 C 1�R2�, gradjf �0, 0�j � 0:

Let its velocity be V(t ) and V(0)$0.
Let the maximum speed (a ) of wave propagation in the medium be ®nite.
Then there exists a time interval [0, ta ], ta>0, on which g exceeds a.

Proof. Let us denote the cross-section of the body at the height H as G(H ) and its boundary as @G(H ).
Then, the vector of the unit normal n to @G(H ) is

n � grad f

jgrad fj :

Let us denote the points of @G(H(t0)) as �x�1, x�2� and the points of @G(H(t1)) as �x��1 , x��2 � where
t1=t0+Dt. Then we have

f
ÿ
x�1, x

�
2

�ÿH�t0� � 0, f
ÿ
x��1 , x��2

�ÿH�t1� � 0:

Linearizing the latter equation, we obtain

f
ÿ
x��1 , x��2

� � f
ÿ
x�1, x

�
2

�� hgrad f
ÿ
x�1, x

�
2

�
, Dxi � o�Dx�, Dx � ÿx��1 ÿ x�1, x

��
2 ÿ x�2

�
,

where h,i denotes the scalar product of vectors.
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Next, we have

H�t1� �
�t1
0

V�t�dt �
�t0
0

V�t�dt� V�t0�Dt� o�Dt� � H�t0� � V�t0�Dt� o�Dt�:

Hence

hgrad f
ÿ
x�1, x

�
2

�
, Dxi � V�t0�Dt

or *
grad f

ÿ
x�1, x

�
2

����grad f
ÿ
x�1, x

�
2

���� , Dx

+
� V�t0����grad f

ÿ
x�1, x

�
2

����Dt:
Let us recall that g is the velocity of the curve @G measured along the normal to @G

g
ÿ
x�1, x

�
2, t0

� � lim
Dt40

hn, Dxi
Dt

or

g
ÿ
x�1, x

�
2, t0

� � V�t0����grad f
ÿ
x�1, x

�
2

���� :
Since V(0) > 0, there exists an interval [0, T0] when V(t ) > 0, t $ [0, T0]. Therefore, there exists an

interval [0, ta ], ta< T0, such that

g
ÿ
x�1, x

�
2, t0

�
> a, t0 2 �0, ta�,

ÿ
x�1, x

�
2

� 2 @G�H�t0�� �24�

because the body is blunt.
In the case of an isotropic elastic medium, the maximum speed of waves is the speed of propagation

of the longitudinal waves a.
As we have mentioned, it is said (see, e.g., Kubenko, 1997) that the process of indentation in the

interval [0, ta ] is supersonic.

4.2. Conditions of self-similarity

It is known (see, e.g., Borodich, 1990c) that the similarity in the static Hertz contact problem can be
found for bodies of materials whose operators of constitutive relations are homogeneous functions of
degree m with respect to the components of the strain tensor Eij, i.e., for each positive l we have

F�lEij � � lmF�Eij �:
Let us consider a hyperelastic medium, i.e., that medium for which a positive de®ned potential U (the

elastic energy) exists. In this case, the constitutive relations have the form

sij � @U

@Eij

and the stresses sij and deformations Eij are independet of the time. The constitutive relations are
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homogeneous if U is a homogeneous function of degree m+1 in terms of Eij, i.e.,

U�lEij � � lm�1U�Eij �: �25�
The following assertion was proved by Borodich (1990c) for frictionless contact problems. However, it

is easy to check in the way used by Borodich (1993) in static contact problems that the assertion is also
valid for adhesive or frictional contact problems with Coulomb law of friction, i.e., for problems with
Eq. (11) or Eq. (12).

Assertion 2. Let the constitutive relations of the elastic half-space satisfy conditions (Eq. (25)). Let the
shape of a convex die be described by a positive, homogeneous function f of degree dr1, i.e.,

f �x1, x2� > 0, 8�x1, x2� 2 R2nf0g

f �lx� � ldf �x�, 8l > 0:

Let the die's velocity be V(t ) and

V�t� � V�1�t
�dÿ1��m�1�
d�1ÿm�dÿ1� : �26�

Assume further that at the moment t = 1 the solution of a contact boundary-initial value problem
(Eqs. (4), (5), (7), (8), (13) and (14)), and one of the conditions (Eqs. (10)±(12)) is given by u(x, 1) and
G(1), and the surfaces of discontinuity Sk are determined by equations Sk(x, 1)=0.
Then, the contact boundary-initial value problem at any moment t, t $ (0, T ] is satis®ed by

u�x, t� � lÿdu�lx, 1�,

��x1, x2� 2 G�t�� , �lx1, lx2� 2 G�1��,
where l=t 2/[m(d ÿ 1)ÿ(d + 1)].

The points x of the surfaces of discontinuity Sk at the moment t are determined by the equations
Sk(lx, 1)=0.

Corollary. The resultant force P(t ) of contact between the medium and the contacting body is
determined by

P�t� � P�1�t2�2�m�dÿ1��=��d�1�ÿm�dÿ1��:

Remarks.

1. It follows from Eq. (26) that if d$1, then the velocity of the die at the moment t = 0 is zero. The
speed of the contact region boundary is constant in these self-similar problems. Thus, there is either
no supersonic stage of the contact or the extension of the contact region is ever supersonic.

2. The case of linear elastic medium can be obtained by substituting m=1 in the above equations. The
conditions of the known self-similar problems for this medium:

(i) a conical die having constant velocity (see, e.g. Kostrov, 1964a, 1964b; Willis, 1973; Bedding
and Willis, 1973, 1976; Afanasev and Cherepanov, 1973; Robinson and Thompson, 1974b; Brock,
1976, 1977);
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(ii) a uniformly accelerated parabolic die (Afanasev and Cherepanov, 1973) can be obtained by
substituting in the above equations d=1 and d=2, respectively.

5. Exact solutions to plane wave problems for anisotropic elastic, viscoelastic, and elastic with initial
stresses media

These solutions were obtained by Borodich (1990c, 1998). Here, we write these solution for the sake
of completeness of the paper.

5.1. The general solution

Let us assume that the boundary plane y3=0 of a homogeneous prestressed elastic half-space is
loaded beginning at the time t = 0, and the load applied is the same for all points of the plane. Then,
we have

u�y, t� � u� y3, t�: �27�
It follows from Eq. (27) that

@u

@y1
� @u

@y2
� 0: �28�

After substituting Eq. (28) into Eq. (A3), the linearized equations of motion become

1

r�
o�3ak3

@ 2uk
@y23
ÿ �ua � 0: �29�

Hence, for both anisotropic elastic and elastic with initial stresses media, we can write the equations
of motion as

Lakuk, 33 ÿ �ua � 0, �30�
where

Lak � 1

r
Ca3k3

and

Lak � 1

r�
o�3ak3,

respectively. In the case of an isotropic elastic medium, the matrix Lak is de®ned by

Lak � 1

r

0@m 0 0
0 m 0
0 0 l� 2m

1A:
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In the case of linear elasticity, the matrix (Lak ) is symmetrical and positive-de®nite because the tensor
Cijkl is symmetric and positive-de®ne. As has been mentioned above, dynamical problems for elastic
media with initial stresses are more complex than problems for linear anisotropic elastic media.
However, the matrix (Lak ) in Eq. (30) is symmetric due to Eqs. (A1) and (9) and positive-de®nite due to
the Hadamard conditions (A7).

It is known (see, e.g., Eringen and Suhubi, 1974; Guz, 1986b) that for real symmetric tensors, the
eigenvalues are real and principial directions linked to distinct eigenvalues are mutually orthogonal.
Therefore, there are three mutually orthogonal eigenvectors el with real positive eigenvalues C 2

l such
that

LLLel � C 2
aea:

Let us expand u in terms of this orthogonal basis el

u� y3, t� � u�1� y3, t�e1 � u�2� y3, t�e2 � u�3� y3, t�e3,
where coe�cients u�l are some scalar functions. Using this orthogonal basis, we obtain that the
equations of motion are equivalent to the three plane wave equations

C 2
a@

2u�a=@y
2
3 ÿ �u�a � 0:

Applying d'Alembert's assertion (see, e.g. Eringen and Suhubi, 1975), we obtain that the general form
of a solution to the plane wave problem, for an anisotropic prestressed elastic half-space, is

u� y3, t� � Fl� y3=Cl ÿ t�el: �31�
Here Fl(x ) are arbitrary twice continuously di�erentiable functions of one variable such that F 0l �0� �

F 00l �0� � 0 and Fl(x )=0 for xr0, where the prime denotes the derivative with respect to the argument
of the function.

Thus, the stress vectors, Q3( y3, t )=Q31i1+Q32i2+Q33i3 and ss3(x3, t )=s31i1+s32i2+s33i3, can be
represented in the basis el as

Q3� y3, t� � r�LLL@u� y3, t�=@y3 � r�ClF 0l � y3=Cl ÿ t�el,

sss3�x3, t� � rLLLu,3�x3, t� � rclF 0l �x3=cl ÿ t�el, �32�
respectively.

5.2. The boundary-initial value problem for plane waves

Let us now consider the boundary-initial value problem for plane waves. We seek a vector u( y3, t )
that satis®es the equations of motion, zero initial conditions and the following boundary conditions on
the plane y3=0:

Q31�0, t� � Q32�0, t� � 0, u3�0, t� � Y�t� �33�
where Y(t ) is a given twice continuously di�erentiable function of time.

The former condition in Eq. (33) can be rewritten in the form

Q3�0, t� � w�t�i3,
where w(t ) is the desired unknown function.
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Let al be the coe�cients of the expansion of the vector i3 in the basis el, i.e., i3=alel.
Using the above general solution Eq. (32), we obtain

Q3�0, t� � r�ClF 0l �ÿt�el � w�t�alel
and, therefore, we have

F 0b�ÿt� � ab
ÿ
r�Cb

�ÿ1w�t�:
After integration, we obtain

Fb�ÿt� � ab
ÿ
r�Cb

�ÿ1k�t�, k�t� � ÿ
�0
ÿt

w�ÿt�dt:

On the other hand, we obtain from Eq. (31)

u3� y3, t� � hu� y3, t�, i3i � Fl� y3=Cl ÿ t�al
or

u3�0, t� � Y�t� � al � al
ÿ
r�Cl

�ÿ1
k�t�:

Let us de®ne the constant a for an anisotropic elastic medium with initial stresses in accordance with
the equation

a � ÿa21=C1 � a22=C2 � a23=C3

�ÿ1
, �34�

then we obtain

k�t� � r�aY�t�:
Thus, the exact solution to the problem has the following form

u� y3, t� � aalC ÿ1l Y�tÿ y3=Cl�el �35�
and the stress vectors ss3(x3, t ) and Q3( y3, t ) have the following form

sss3�x3, t� � ÿraalY 0�tÿ x3=Cl�el, Q3� y3, t� � ÿr�aalY 0�tÿ y3=Cl�el: �36�

5.3. Plane waves in orthotropic viscoelastic media

Let us now consider the boundary-initial value problem for plane waves in orthotropic viscoelastic
media. The constitutive equations Eq. (5) for such media can be written as (see, e.g., Rabotnov, 1980)

sij � ~Cijkl@uk=@xl, ~Cijkl � Cijkl ÿ G�ijkl,

where Cijkl is the tensor of instantaneous elastic modulus of the material and G�ijkl is the integral Volterra
operator with a di�ernce kernel.

Again, we seek a vector u(x3, t ) that satis®es the equations of motion, zero initial conditions and the
boundary conditions (33) on the plane x3=0:

s31�0, t� � s32�0, t� � 0, u3�0, t� � Y�t�:
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The type of these boundary conditions does not change throughout the period of the problem under
consideration. Therefore, the Volterra principle is valid for the problem. Applying the principle, we can
take the solution Eq. (36) and replace the function of elastic constants a by the corresponding operator
{a+A�}, where A� is the Volterra operator with the kernel A(t ). Note that for orthotropic media, we
have e3=i3, a1=a2=0, a3=1 and, hence, it follows from Eq. (34) that a=(C3333/r )

1/2. Then we have

sss3�0, t� � ÿr ~AalY 0�t�el � ÿr
�
aY 0�t� �

�t
0

Y 0�tÿ t�A�t� dt
�

i3 �

ÿ r
�
aY 0�t� ÿ Y�0�A�t� � Y�t�A�0� �

�t
0

Y�tÿ t�A 0�t� dt
�

i3:

Taking into account that Y(0)=0, we obtain

sss3�0, t� � ÿr
�
aY 0�t� � Y�t�A�0� �

�t
0

Y�tÿ t�A 0�t�dt
�

i3: �37�

6. Method of integral characteristics for weak elastodynamic states

For a weak elastodynamic state (Eqs. (15) and (16)), we introduce the following integral
characteristics

w�x3, t� �
� �

R2

u dx1 dx2,

llli�x3, t� �
� �

R2

@ iu dx1 dx2,

lll4�x3, t� �
� �

R2

@ Çu dx1 dx2,

Sij�x3, t� �
� �

R2

sij dx1 dx2: �38�

6.1. General properties of the integral characteristics

It was shown by Borodich (1990b, 1990c) that for the integral characteristics Eq. (38), the following
lemma is valid.

Lemma. Let the support of the functions u and sij be spatially bounded for 0 R t R t�. Then the integral
characteristics introduced in Eq. (38) possess the following properties:

1. w, lli, ll4 are determined almost everywhere in R+� [0, t�] and are summable;
2. w�x3, t� 2W 1

2�R� � �0, t���;
3. ll3 and ll4 are generalised derivatives of the function w(x3, t ) with respect to x3 and t, respectively;
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4. ll1 and ll2 equal zero for almost all x3 and t;
5. ll3, ll4 $ L2(R+� [0, t�]).

We suppose that a weak elastodynamic state which gives a solution to the boundary-initial value
problem (Eqs. (15)±(22)) exists and is unique.

The discussions of the questions of the uniqueness of weak solutions to hyperbolic equations, as well
as to the ®rst and the second boundary-initial value problems in linear elastodynamics, can be found in
Ladyzhenskaya (1985) and Brockway (1972). In addition, general uniqueness and existence questions for
problem of dynamical indentation were considered by Georgiadis and Barber (1993).

Due to the boundedness of the supports of the functions u and sij at the initial time and the ®niteness
of the maximal speed of wave propagation in the medium, the supports of these functions are bounded
for any ®nite t. Thus, the conditions of the above lemma are satis®ed.

In this paper, we consider the frictional contact problems only for dies which can be represented as a
blunt convex rigid body having an arbitrary shape with two orthogonal planes of symmetry 0x1x3 and
0x2x3, which are both orthogonal to the boundary of half-space. These planes are planes of symmetry
for the problem (Eqs. (15)±(22)) under consideration.

As a consequence, we obtain that for any kind of boundary conditions, frictional, adhesive or
frictionless, the following conditions of symmetry are satis®ed

s31�x1, x2, 0, t� � ÿs31�x1, ÿ x2, 0, t�, s32�x1, x2, 0, t� � ÿs32�ÿx1, x2, 0, t�

for any point of the boundary surface. Then, for any conditions on the tangential surface tractions T1

and T2, we have

S31�0, t� � S32�0, t� � 0, t 2 �0, t��: �39�
Using the lemma and Eq. (39), we obtain from Eq. (23) the following equations for integral

characteristics w and sij�t�
0

�
R�
�r_ya@ _wa ÿ ya, 3S3a� dx3 dt � 0: �40�

The last identities are satis®ed for any functions yy, such that

yyy�x3, t� 2 C 1�R� � �0, t���,

yyy�x3, t�� � 0,

yyy�0, t� � 0, 0RtRt�:

Thus, from Eqs. (15), (18), (19), (22) and (40), we obtain that the integral characteristics w and sij of
the problem under consideration, introduced in Eq. (38) satisfy the following boundary-initial value
problem

w 2 C�R� � �0, t���; w 2W 1
2�R� � �0, t���,

Sij �Ff�@3wk � @3wl�=2g on R� � �0, t��,
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w�x, 0� � 0,

w3�0, t� � Y�t�,

�t�
0

�
R�
�r_ya@ _wa ÿ ya, 3S3a� dx3 dt � 0, �41�

where Y(t ) is a known function, given by

Y�t� �
� �

R2

u3�x1, x2, 0, t� dx1 dx2: �42�

The problem (41) for the integral characteristics is a problem concerning plane wave propagation in
the same linear medium.

6.2. Weak solutions to the plane wave problems

Let us consider a homogeneously prestressed elastic medium. As in the above three-dimensional
dynamic problem (Eqs. (15)±(17), (19) and (21)±(23)), we seek a vector u such that

u 2W 1
2�R� � �0, t���; u 2 C�R� � �0, t���; u� y3, 0� � 0

u3�0, t� � Y�t�,
�t�
0

�
R�
�_yb _@ub ÿ yb, 3Q3b� dy3 dt � 0: �43�

The integral identities are satis®ed for any functions yy such that

yyy 2 C 1�R� � �0, t���, yyy� y3, t�� � 0,

y3� y3, t� 2 C 1
0�R�� for 0RtRt�:

Assertion 3. The generalized solution to the above weak formulation of the plane wave problem Eq. (43)
has the form of Eqs. (35) and (36).

Indeed, if Y(t ) is a continuous function of one argument, then Eqs. (35) and (36) satisfy Eq. (43), i.e.,
it is a weak solution of the plane wave problem. It follows from the uniqueness theorem that this
solution is unique.

We see that the weak formulation of the above plane wave problem Eq. (43) and the one dimensional
problem Eq. (41) for the integral characteristics are the same. Thus, we can formulate the following
assertion.

Assertion 4. The weak solution to the one-dimensional dynamical problem Eq. (41) has the form

w� y3, t� � aalY�tÿ y3=Cl�el=Cl: �44�
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Corollary. The stress vector SS={S3i} has the form

SSS� y3, t� � ÿr�alY 0�tÿ y3=Cl�el: �45�
where the prime denotes the generalized derivative in the Sobolev sense. Note that r� should be replaced
by r in the case of linear elasticity.

During the ®rst, supersonic stage of contact, we obtain from Eqs. (8), (19), (42) and (45)

Y�t� �
�

R2

g� y1, y2, t� dy1 dy2, Y 0�t� � V�t�S�t�,

SSS� y3, t� � ÿraV�tÿ y3=C3�S�tÿ y3=C3�e3: �46�
Note that P(t )=ÿ(SS(0, t ), i3). Thus, if the die is a blunt convex rigid body having an arbitrary shape

with two orthogonal planes of symmetry, which are both orthogonal to the boundary of half-space, then
for any kind of boundary conditions frictional, adhesive or frictionless, we obtain from Eq. (46) that the
instantaneous value of the force required to indent the die during the supersonic stage of contact is
de®ned by Eq. (2).

7. Integral characteristics for problems of pressing with rotation of body axes

Let us consider frictionless problems of pressing a die into a continuous half-space in the case when
the axes of the die are rotated. It is supposed in this problem that both the velocity vK(t ) of the centre
of mass of the body K, and its angular velocity oo are known.

On the supersonic stage of propagation of the boundary of the contact region, the following
relationships were obtained for the resulting force P of contact between the medium and the contacting
body and the resulting moments Mi of contacting stresses about axes x1 and x2

P � ra
�
vK3 S� o1S

�
1 ÿ o2S

�
2

� �47�
and

M1 � ra
�
vK3 S

�
1 � o1I

�
22 ÿ o2I

�
12

�
; M2 � ÿra

�
vK3 S

�
2 � o1I

�
12 ÿ o2I

�
11

�
, �48�

where Ox1x2x3 is the initial coordinate system, O is the point of initial contact between the body and
the half-space taken as the coordinate origin, O1x

0
1x
0
2x
0
3 is the coordinate system with axes parallel to

the initial system, O1 is the projection of the point K onto the boundary plane, S�i and I �ij are the static
moment and the moment of inertia of the contact region G about the axis x 0i , respectively (Fig. 2).

In the case of an isotropic elastic medium, Eqs. (47) and (48) were announced by Gorshkov and
Tarlakovskii (1987). However, a detailed proof was not available for a rather long time after this. The
author used his method of integral characteristics and obtained that Eq. (47) is an elementary
consequence of Eq. (45) and, therefore, it is valid in the case of an arbitrary anisotropic elastic medium
with constant a from Eq. (34) (Borodich, 1990c, 1991). Indeed, on the supersonic stage, the integral of
vertical displacements of points of the boundary plane is equal to the integral of vertical displacements
of points of the contact region, this integral in turn is equal to the volume of indented part of the body.
However, the velocities of these points v3(x1, x2, 0, t ) in the region G(t ) are not the same. Using the
Euler theorem for velocities of body points, we obtain
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v3
ÿ
x 01, x

0
2, 0, t

� � vK3 �0, 0, 0, t� � o1x
0
2 ÿ o2x

0
1:

Substituting this formula in the expression for Y '(t ), we obtain

Y 0�t� �
�
G�t�

v3
ÿ
x 01, x

0
2, 0, t

�
dx 01 dx 02 � vK3 S� o1S

�
1 ÿ o2S

�
2:

Then it was shown that Eq. (48) are valid for an anisotropic elastic medium when the planes Ox1x3
and Ox2x3 are planes of symmetry, i.e., for an orthotropic medium. To prove this result, two auxiliary
problems were solved, namely

1. a self-similar problem of ®nding a resulting force Sh
33�0, t;x0

1, x
0
2� and moments Mh

1, M
h
2, arose in the

medium caused by a concentrated velocity or displacement applied at the point �x0
1, x

0
2�;

2. superposition of obtained solutions.

Such a superposition is possible because the problem is linear.
Let us show that Eqs. (47) and (48) are valid for an elastic medium with initial stresses when the

planes Oy1y3 and Oy2y3 are planes of symmetry of the problem.
First, we consider the auxiliary problem concerning a concentrated velocity. The boundary conditions

are the following

u�3� y1, y2, 0, t� � h�t�dÿy1 ÿ y01, y2 ÿ y02
�

or v�3� y1, y2, 0, t� �H�t�dÿy1 ÿ y01, y2 ÿ y02
�
,

Q31� y1, y2, 0, t� � Q32� y1, y2, 0, t� � 0:

In this paragraph, we denote by H the Heaviside step function and h '(t )0H(t ).
The displacements at all points of the boundary plane with the exception of y01 and y02 are zero.

Therefore, there are some external stresses Qh
33� y1, y2, 0, t�, which hold the boundary plane y3=0.

It follows from the boundary conditions that Y(t )=h(t ) and Y '(t )=H(t ). Using the solution for the
plane wave problem, we obtain

Fig. 2. Coordinate systems in the problem of pressing with rotation of the die axes (after Borodich, 1990c).
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Sh
33

ÿ
0, t; y01, y

0
2

�
� ÿr�ah 0�t�, a � ������������������

o�3333=r�
p

:

The stresses result in moments Mh
1 and Mh

2 about axes y1 and y2, respectively. Due to the symmetry of
the considered problem, we have

Qh
33

ÿ
y01 � Dy1, y2, 0, t

� � Qh
33

ÿ
y01 ÿ Dy1, y2, 0, t

�
for any Dy1. Therefore, we have

Qh
33

ÿ
y01 � Dy1, y2, 0, t

�ÿ
y01 � Dy1

�
�Qh

33

ÿ
y01 ÿ Dy1, y2, 0, t

�ÿ
y01 ÿ Dy1

�
�y01

h
Qh

33

ÿ
y01 � Dy1, y2, 0, t

��Qh
33

ÿ
y01 ÿ Dy1, y2, 0, t

�i
:

Substituting this formula in the de®nition of the moment Mh
2, we obtain

Mh
2

ÿ
t; y01, y

0
2

�
�
� �

R2
Qh

33� y1, y2, 0, t�y1 dy1 dy2 � y01S
h
33

ÿ
0, t; y01, y

0
2

�
� ÿy01r�aH�t�:

In a similar way, we obtain

Mh
1

ÿ
t; y01, y

0
2

� � ÿ� �
R2

Qh
33� y1, y2, 0, t�y2 dy1 dy2 � ÿy02Sh

33

ÿ
0, t; y01, y

0
2

� � y02ra
�H�t�:

This is the solution of the auxiliary problem concerning a concentrated velocity.
Let us now consider the initial problem in the coordinate system O1y

0
1y
0
2y
0
3 which is introduced in a

similar way as the system O1x
0
1x
0
2x
0
3 was introduced. The instantaneous value of the velocity at a point

�y 01 0, y 02
0� of the contact region is

v3
ÿ
y 01

0, y 02
0, 0, t

� � vK3 �0, 0, 0, t� � o1y
0
2
0 ÿ o2y

0
1
0:

Let us remember that we consider a linearized problem. Hence, the velocity causes the following
moments about the axes O 0y 01 and O 0y 02

M1

ÿ
t; y 01

0, y 02
0
� � y 02

0r�av3
ÿ
y 01

0, y 02
0, 0, t

�
, M2

ÿ
t; y 01

0, y 02
0
� � ÿy 01 0r � av3

ÿ
y 01

0, y 02
0, 0, t

�
:

Using superposition of the solutions obtained, we get

M2�t� �
� �

G�t�
M2

ÿ
t; y 01

0, y 02
0
�

dy 01
0 dy 02

0 �

ÿ r�a
� �

G�t�
y 01

0
�
vK3 �0, 0, 0, t� � o1y

0
2
0 ÿ o2y

0
1
0
�

dy 01
0 dy 02

0:

This leads to Eq. (48), where r should be replaced by r�.

8. Exact solutions to problems of collision

The papers concerning impact problems often assumed that the velocity of the body is constant
during the supersonic stage of vertical impact. (see, for example, Skalak and Feit, 1966; Kubenko and
Popov, 1989). However, in the problem of vertical collision, the velocity of the body is determined from
Newton's equation
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m _V�t� � ÿP�t� �49�
where m is the mass of the die.

Only one solution was known to the collision problem with the use of Eq. (49). This was the problem
of frictionless impact on an isotropic elastic half-space (Thompson and Robinson, 1977). Then the
solutions were obtained for frictionless impact on an acoustic half-space (Borodich, 1988b) and an
anisotropic elastic half-space (Borodich, 1990b). Finally, solutions were obtained for problems of
frictional impact on an isotropic elastic half-space (Borodich and Gomatam, 1998).

Now solutions will be obtained for problems of frictional impact on anisotropic elastic and elastic
with initial stresses media. We will obtain expressions for the relationships between time, depth of
indentation and velocity of the body. In particular case, when the body is a elliptic paraboloid or an
elliptic cone, the expressions have simple algebraic forms.

8.1. General solution

If the body has two orthogonal planes of symmetry 0x1x3 and 0x2x3 (0y1y3 and 0y2y3, respectively)
which are both orthogonal to the boundary of half-space then we obtain from Eqs. (49) and (2)

m _V�t� � ÿraV�t�S�t�: �50�
Let us denote v[H(t )]0V(t ). Taking into account that _H � V (see Eq. (9)), we have

_V�t� � V
dv

dH
: �51�

Substituting Eq. (51) into Eq. (50), we obtain

m
dv

dH
� ÿras�H �,

where

s�H�t�� � S�t�: �52�
By integrating Eq. (52), we obtain the velocity of the die as a function of H

v�H � � V�0� ÿ r
a

m
Y�H �,

where

Y�H � �
�H
0

s�h�dh �53�

and the relationship between time and depth of penetration to be

t �
�H
0

dh

V�0� ÿ ramÿ1Y�h� : �54�

It is easy to see that Y(H ) is the volume of the die under the section at height H. Eqs. (53) and (54)
give the exact solution of the problem considered.
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8.2. Impact of an elliptic paraboloid

Let us consider a particular case, when the body is described by a quadratic form

f �x1, x2� � B 01x
2
1 � B 012x1x2 � B

0
2x

2
2:

By rotation of the coordinate axes, the form can be transformed into

f
ÿ
x�1, x

�
2

� � B1x
�2
1 � B2x

�2
2 , B2rB1 > 0,

i.e., we have obtained an elliptic paraboloid which is a ®gure with two orthogonal planes of symmetry
0x �1 x3 and 0x �2 x3, which are both orthogonal to the boundary of the half-space.

In this case, the exact solution of the impact problem (53) and (54) can be written in simple algebraic
functions

s�h� � ph�����������
B1B2

p , Y�h� � ph2

2
�����������
B1B2

p ,

t � 1

K
ln

�����1�HV ÿ1�0�K=2
1ÿHV ÿ1�0�K=2

�����, K �
���������������������
2prV�0�a
m

�����������
B1B2

p
s

:

We can resolve the problem and obtain the following direct relationships between time t and desired
functions

H�t� � 2V�0�
K

eKt ÿ 1

eKt � 1
,

V�t� � 4V�0� eKt

�eKt � 1�2 , P�t� � ÿ4V�0�mK
eKt ÿ e2Kt

�eKt � 1�3 : �55�

Note the solution to the frictionless problem presented by Thompson and Robinson (1977) had some
misprints and the constants of the solution were wrong.

8.3. Impact of a blunt four-sided pyramid

Let us consider another particular case, namely the case when the body is described by a blunt four-
sided pyramid

f �x1, x2� � B1jx1j � B2jx2j, B2rB1 > 0:

We assume that the pyramid is blunt enough to write all boundary conditions on the surface x3=0.
In this case, the exact solution of the impact problem (Eqs. (52) and (53)) is given by the following
formulae

s�h� � 2h2

B1B2
, Y�h� � 2h3

3B1B2
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t �
�H
0

dh

V�0� ÿ 2ra�3mB1B2�ÿ1h3
� 1

V�0�
�H
0

dh

1ÿ h3=L3
1

,

where

L1 �
�
3mB1B2V�0�

2ra

�1=3

:

The last integral can be written in the following form (use Eq. 2.126 in Gradshteyn and Ryzhik, 1965)

t � 1

V�0�
L1

3

"
ÿ 1

2
ln

�Hÿ L1�2
H 2 � L1H� L2

1

�
���
3
p

arctan
H

���
3
p

2L1 �H

#
: �56�

8.4. Impact of an elliptic cone

Next, consider the case when the body is described by a blunt elliptic cone

f �x1, x2� �
���������������������������
B1x

2
1 � B2x

2
2

q
, B2rB1 > 0:

We suppose again that the cone is blunt enough to write all boundary conditions on the surface
x3=0. The exact solution of the impact problem (Eqs. (52) and (53)) is given by the following formulae

s�h� � ph2�����������
B1B2

p ,

Y�h� � ph3

3
�����������
B1B2

p

and

t �
�H
0

dh

V�0� ÿ rap�3m �����������
B1B2

p �ÿ1h3 �
1

V�0�
�H
0

dh

1ÿ h3=K 3
1

,

where

K1 �
 
3m

�����������
B1B2

p
V�0�

rap

!1=3

:

As above, the last integral can be written in the following form

t � 1

V�0�
K1

3

"
ÿ 1

2
ln

�Hÿ K1�2
H 2 � K1H� K 2

1

�
���
3
p

arctan
H

���
3
p

2K1 �H

#
: �57�

Note that since pyramids and cones are not smooth, Eq. (24) does not hold for all V(0). We have that
max|grad f(x1, x2)| is equal to �B2

1 � B2
2�1=2 and B1=2

2 for pyramid and cone respectively. Therefore, we
obtain that ming(x1, x2, t )RV(0)/max|grad f(x1, x2)|. Thus, if
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V�0�Ra maxjgrad f �x1, x2�j,
there is no supersonic stage of contact and Eqs. (56) and (57) are not valid.

9. Discussion and conclusion

For both anisotropic elastic and elastic with initial stresses media, we have obtained solutions for
impact problems which were solved earlier for only an isotropic linear elastic medium (Thompson and
Robinson, 1977; Borodich and Gomatam, 1998). Exact expressions have been derived for the
relationships between time, depth of indentation, velocity of the body and contact force. If the body is
an elliptic paraboloid, a blunt four-sided pyramid or an elliptic cone, some of these formulae are
expressible in terms of elementary functions. The expressions obtained are independent of the boundary
conditions prevailing in the contact region.

We have seen that the method of integral characteristics of solutions to boundary-initial value contact
problems (Borodich, 1990a, 1990b, 1990c) is very e�ective. It allows us to ®nd the resultant contact
force and the resulting moments Mi of contacting stresses in the problem of frictionless pressing with
rotation of the die axes.

We have also found the resultant contact force in the problem of both frictional and frictionless
pressing normal to the boundary plane of the anisotropic continuous half-spaces. Note that expressions
for resultant forces are not always as simple as Eq. (2). Indeed, it follows from Eq. (37) that the
expression in the case of vertical pressing into a linear viscoelastic orthotropic medium has the following
form

P�t� � r
�
aY 0�t� � Y�t�A�0� �

�t
0

Y�tÿ t�A 0�t�dt
�
:

The exact solutions to impact problems can be used to estimate the accuracy of the used numerical
methods. For example, Eq. (2) was used by Iarve (1989) (see also Bogdanovich and Iarve, 1992) for
such estimations. Evidently, Eq. (55) is more useful for such a purpose.

It should be noted that the used method is valid for media with linear constitutive relations only when
it is known that nonlinear plastic e�ects are often quite signi®cant for the problem. Another restriction
is that Eq. (2), is valid only on the short-term supersonic stage of contact, while Eq. (3) cannot usually
be used in an e�ective way because the mean velocity V1(t) is unknown. Nevertheless, Eq. (3) can be
used to estimate the energy dissipating by waves during the contact between a die and a half-space.

To take into account the plastic e�ects, an approach was suggested by Borodich (1992) (see also
Antonov and Borodich, 1993; Borodich and Goldstein, 1995). The idea of the approach goes back to
Simonov and Flitman (1966). This approach combines the similarity consideration of the quasi-static
Hertz impact problem for non-linear media (Borodich, 1990c, 1993) and the results concerning the
resultant force in the dynamic impact problem. Thus, the above results concerning integral
characteristics can be used to estimate the energy dissipation during elastic±plastic collission. We intend
to continue our studies in this direction.
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Appendix A. Linearized equations for homogeneously prestressed elastic media

The equations of the theory of nonlinear elasticity may be written using a variety of stress and strain
tensors and linearized equations for bodies with initial stresses may be written in a variety of forms.
Information concerning dynamical problems for homogeneously deformed nonlinear elastic solids can
be found elsewhere (see, e.g., Eringen and Suhubi, 1974; Guz, 1986aGuz, 1986b). Here, we recall only
the formulations which are necessary to study the boundary-initial value problems for hyperelastic
Hadamard materials with ®nite initial deformations.

Consider a nonlinear elastic orthotropic medium occupying a half-space. Let this medium be
prestressed. Let us denote all quantities pertaining to the initial static stress state by superscript `(A )'.
We will call the state of the body A. Suppose that the wave motion results in a small perturbation of the
initial stress-state in the half-space. Considering linearized problems with initial stresses, we will denote
quantities pertaining to the underformed state by a superscript `(0)', and the small perturbations will be
used without any subscripts or superscripts. Thus, for the vector of displacements in the underformed
state u(0), the following expression can be written, u(0)=u(A )+u.

Let us introduce the Lagrangian coordinate system OX 1X 2X 3, which coincides with the Cartesian
coordinate system in the underformed or natural state. It is known that covariant and contravariant
components coincide with each other in the Cartesian coordinates and we can write Xk0Xk. Let Ik be
unit vectors lying along the coordinates Xk, i.e., they are rectangular base vectors. We orient the X3 axis
into the interior of the half-space R3

� and the X1 and X2 axes along its boundary. Let us suppose that
axes of elastic symmetry coincide with the X1, X2, X3 axes.

Let us introduce another system of the Lagrangian coordinates y1, y2, y3 which in the initial deformed
state A coincide with Cartesian coordinates. Let ik be unit vectors lying along the coordinates yk.

The initial stress ®eld is assumed to be constant for all points of the half-space, i.e., the ®eld is
homogeneous. Then the extension ratios li of material ®bres directed along xi axes are constant and for
the coordinates of a material particle in the natural state and state A, we have yi=laXa. If dij is the
Kronecker delta, then the following expression can be written

u
�A�
j � daj�la ÿ 1�Xa � dajya�la ÿ 1�=la,

due to the homogeneity of the initial stresses.
Let us write equations in the domains where the vector u is continuous, together with its derivatives

up to second order with respect to the coordinates and time.
In the system Xi, we will use the non-symmetric increment in the Kirchho� (Piola±Kirchho�) tensor

of stresses, which will be denoted by tmn. The linearized constitutive relations for homogeneously
deformed elastic solids can be written as (see, e.g. Guz, 1986a)

tij � oijkl
@uk
@Xl

,

where components of the tensor oijkl are independent of the coordinates of the point due to
homogeneity of the initial stresses. However, the components oijkl depend on the initial deformations
and the type of energy function which is used to describe the elastic behaviour of the material.

It is known (see, e.g. Guz, 1986a) that in the general case

oijkl � olkji, oijkl 6� oijlk, oijkl 6� oklij: �A1�
The tensor Cijkl has larger symmetry properties Eq. (6). Hence, dynamical problems for elastic with

initial stresses media are more complex than for anisotropic elastic media and the above-mentioned
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methods cannot be applied in a direct way to solve dynamical problems for elastic bodies with initial
stresses. This is one of the reasons that dynamical contact problems for prestressed solids were
considered in a few papers only (see, e.g. Babich, 1987; Borodich, 1991).

The equations of motion have the following form

oijkl
@2uk
@Xi@Xl

ÿ r�0�
@ 2uj
@t2
� 0, �A2�

where r (0) is the density of the material in the natural state.
Now let us write all relations of the linearized theory of elasticity for a medium with initial stresses

using coordinates yi and refer all quantities to the surface elements in the initial deformed state A. Let
Qij(y, t ) be components in the Cartesian system of the non-symmetric stress tensor Q, linearly related to
the components of the Kirchho� stress tensor. The components of Q are related to the area units in the
state A. The component Qnl is the lth component of the stress vector Qn acting on the positive side of
the coordinate surface with the nth component of the normal, i.e., Qn=Qnlil.

For homogeneously deformed elastic solids, the linearized constitutive relations and the equations of
motion can be written as

Qij � o�ijkl
@uk
@yl

and

o�ijkl
@2uk
@yiyl

ÿ r�
@2uj
@t2
� 0, �A3�

where

o�ajkb � lalbl1l2l3oajkb, r� � 1

l1l2l3
r�0�: �A4�

From Eqs. (A1) and (A4), we obtain o�ijkl � o�lkji, o
�
ijkl 6� o�ijkl and o�ijkl 6� o�klij:

The displacement ®eld giving solution to any problem of elastodynamics should satisfy some jump
conditions on the surfaces of discontinuity similar to Eqs. (13) and (14) (see for detail, e.g. Brockway,
1972; Eringen and Suhubi, 1974; Guz, 1986a).

One can study plane sinusoidal waves of the form uk=ak exp i(LmXmÿUt ) using the coordinate
system Xk where U is the speed, a is the constant vector of amplitude and L is the constant vector of
the direction of propagation. Substituting this expresion into Eq. (A2), one obtains the following
equation���Bjk ÿU 2r�0�djk

��� � 0, Bjk � oijklLiLl �A5�

to ®nd values of U.
The value U is the wave speed refered to natural dimensions and it can be called natural speed for

propagation normal to a plane of natural normal L. In the system yi, U is the wave speed referred to
true dimensions and it can be called true speed for propagation normal to a plane of normal L (see, e.g.
Guz, 1986b). We will denote the true speeds as C, keeping the notation U for the natural speeds. To
®nd values of C, one should solve the following equation
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���Sjk ÿ C 2r�0�djk
��� � 0, Sjk � oijklLiliLlll, �A6�

which can be obtained by substituting uk=ak exp i(LmymÿCt ) into Eq. (A3) and taking Eq. (A4) into
account.

It is known (see, e.g., Hayes and Rivlin, 1961) that a real material can be maintained in the state of
pure homogeneous deformation if the three roots of Eq. (A6) for C 2, or the roots of Eq. (A5) for U 2,
are all positive. These are the so-called strong Hadamard conditions. These conditions can be written in
a variety of forms. For example, the tensors oijkl are strongly elliptic, i.e.,

oijklxjixkl > 0, o�ijklxjixkl > 0 �A7�

for arbitrary nonzero xmn. Another form of these conditions is that the quadratic forms, Sjkajak and
Bjkajak, are positive for arbitrary nonzero al.

We will assume that the material under consideration satis®es the strong Hadamard conditions.
Evidently, both systems of coordinates can be used to describe the plane wave problem. The

formulation of the problem for the Xk system with the use of the tensor tij is mathematically equivalent
to the formulation of the problem for the yk system with the use of the tensor Qij. The problems are
considered in the paper using only the system yk.

The formulation of the boundary-initial value problem can be closed if we use Eqs. (7)±(14),
substituting yk instead of xk, o�ijkl instead of Cijkl and Qij instead of sij.
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